
8.2.3 Shrinkage Methods 

Multivariate linear regression has low bias, but high variance. 

Shrinkage methods try to minimize the overall error by increasing 

the bias slightly, 
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Figure 8.9 Models from the Figure ??: left, average models; center, linear 
regression models; right, polynomial models. 
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Figure 8.10 The bias–variance trade-off. 

 

while reducing the variance component of the error. Two of the best-

known shrinkage methods are ridge and lasso regression. 

8.2.3.1 Ridge Regression 

Ridge regression increases the bias component of the overall error by 

adding a penalty term for the coefficients 𝛽̂0, 𝛽̂1, … , 𝛽̂p  to Equation (8.10), 
leading to the following objective function for optimization: 
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(8.13) 

for n  instances with p  predictive attributes. This can be, 

according to Equation (8.8), rewritten as: 
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Assessing and ev

⎩

aluating results   As for MLR, the main result

⎭

of ridge regression 
is a set of estimates for the 𝛽̂j coefficients. Indeed, ridge regression is also a 

mul- tivariate linear model, but uses a different method to learn the 𝛽̂j 
coefficients. 
Setting the hyper-parameters Ridge regression has one hyper-parameter, 
the 𝜆, that penalizes the 𝛽̂j coefficients, i.e., as larger 𝜆 is, more costly is to 
have larger 

𝛽̂j coefficients. The right value for 𝜆 is problem dependent. 
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Table 8.3 Advantages and disadvantages of ridge regression. 

 

Advantages Disadvantages 
 

 

• Strong mathematical 

foundation 

• Easily interpretable 

• Deals better with 

correlated predictive 

attributes than 

ordinary least 

squares. 

• Number of instances must be larger 

than number of attributes 
• Sensitive to outliers 
• Data should be normalized 

• When relation between predictive 

and the target attributes is non-linear, 

uses information poorly 

  
 

Advantages and disadvantages of ridge regression The advantages and 

disadvan- tages of ridge regression are shown in Table 8.3. 

 

8.2.3.2 Lasso Regression 

The least absolute shrinkage and selection operator (lasso) regression 

algo- rithm is another penalized regression algorithm, that can deal 

efficiently with high-dimensional data sets. It performs attribute 

selection by taking into account not only the predictive performance of 

the induced model, but also the complexity of the model. The 

complexity is measured by the number of predictive attributes used 

by the model. It does this by including in the equation of the 

multivariate linear regression model an additional weighting 

term, which depends on the sum of the 𝛽̂j weights modules. The weight 
values 
define the importance and number of predictive attributes in the induced 
model. 

The lasso algorithm usually produces sparse solutions. Sparse means 

that a large number of predictive attributes have zero weight, resulting in a 

regression model that uses a small number of predictive attributes. As 
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well as attribute selection, the lasso algorithm also performs shrinkage. 

Mathematically, the lasso algorithm is very well founded. 

The lasso formulation is quite similar to the ridge formulation, as 

presented in Equations (8.14) and (8.13): 
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(8.15) 

However, they result in substantially different models. This is because the 
lasso formulation favors the existence of many zero 𝛽̂j coefficients. To 
illustrate why 
this happens, let us assume that 𝛽̂1 = 0.2 and 𝛽̂2 = 0.3. The ridge approach 
will 

p 

j
=
1 
p j=1 

𝛽̂2 = 0.22 + 0.32 = 0.04 + 0.09 = 0.13 while the lasso approach 

will 
|𝛽̂j| = |0.2| + |0.3| = 0.5. But if, instead, 𝛽̂1  = 0.5 and 𝛽̂2  = 0, 
ridge 

 regression will have ∑p 𝛽̂2 = 0.52 + 02 = 0.25 + 0 = 0.25, a value larger than 

j=1 j 



 

Table 8.4 Advantages and disadvantages of the lasso. 

 

Advantages Disadvantages 
 

 

• Strong mathematical 

foundation 

• Easier interpretation than 

ordinary least squares or ridge 

regression because it produces 

simpler models (with fewer 

predictive attributes) 

• Deals better with correlated 

predictive attributes than 

ridge regression or ordinary 

least squares; 

• Automatically discounts 

irrelevant attributes 

• Number of instances must be 

larger than number of 

attributes 
• Sensitive to outliers 
• Data should be normalized 

• When the relationship 

between predictive and 

target attributes is non-

linear, uses information 

poorly 
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before, but the lasso will have 0.5 + 0 = 0.5, the same value as before. This example shows 

that ridge regression promotes shrinkage while lasso promotes 

attribute selection by setting some of the 𝛽̂j weights to 0 but also shrinking some 
other coefficients. 

Assessing and evaluating results As with MLR and ridge regression, the main result of lasso 

regression are the estimates of the 𝛽̂j coefficients. Lasso regres- sion is also a multivariate linear 
model, but uses a different method to learn the 

𝛽̂j coefficients. 

Setting the hyper-parameters Like ridge regression, lasso regression has one hyper-parameter, 

𝜆, which penalizes the 𝛽̂j coefficients; that is, the larger 𝜆 is, more costly is to have larger 𝛽̂j 
coefficients. The correct value for 𝜆 is problem dependent. 

 


